Date of Graduation


Document Type

Dissertation (PhD)

Program Affiliation


Degree Name

Doctor of Philosophy (PhD)

Advisor/Committee Chair

Michael Beauchamp, Ph.D.

Committee Member

Ruth Heidelberger, M.D., Ph.D.

Committee Member

Anne Sereno, Ph.D.

Committee Member

Sandeep Agarwal, M.D., Ph.D.

Committee Member

Tatiana Schnur, Ph.D.


Comprehending speech is one of the most important human behaviors, but we are only beginning to understand how the brain accomplishes this difficult task. One key to speech perception seems to be that the brain integrates the independent sources of information available in the auditory and visual modalities in a process known as multisensory integration. This allows speech perception to be accurate, even in environments in which one modality or the other is ambiguous in the context of noise. Previous electrophysiological and functional magnetic resonance imaging (fMRI) experiments have implicated the posterior superior temporal sulcus (STS) in auditory-visual integration of both speech and non-speech stimuli. While evidence from prior imaging studies have found increases in STS activity for audiovisual speech compared with unisensory auditory or visual speech, these studies do not provide a clear mechanism as to how the STS communicates with early sensory areas to integrate the two streams of information into a coherent audiovisual percept. Furthermore, it is currently unknown if the activity within the STS is directly correlated with strength of audiovisual perception. In order to better understand the cortical mechanisms that underlie audiovisual speech perception, we first studied the STS activity and connectivity during the perception of speech with auditory and visual components of varying intelligibility. By studying fMRI activity during these noisy audiovisual speech stimuli, we found that STS connectivity with auditory and visual cortical areas mirrored perception; when the information from one modality is unreliable and noisy, the STS interacts less with the cortex processing that modality and more with the cortex processing the reliable information. We next characterized the role of STS activity during a striking audiovisual speech illusion, the McGurk effect, to determine if activity within the STS predicts how strongly a person integrates auditory and visual speech information. Subjects with greater susceptibility to the McGurk effect exhibited stronger fMRI activation of the STS during perception of McGurk syllables, implying a direct correlation between strength of audiovisual integration of speech and activity within an the multisensory STS.


audiovisual speech, functional connectivity, fMRI, McGurk effect, superior temporal sulcus



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.