Date of Graduation


Document Type

Dissertation (PhD)

Program Affiliation

Microbiology and Molecular Genetics

Degree Name

Doctor of Philosophy (PhD)

Advisor/Committee Chair

Kevin A Morano, PhD

Committee Member

Peter Christie, PhD

Committee Member

Michael Lorenz, PhD

Committee Member

Ambro van Hoof, PhD

Committee Member

Eric Wagner, PhD


Cells are exposed to a variety of environmental and physiological changes including temperature, pH and nutrient availability. These changes cause stress to cells, which results in protein misfolding and altered cellular protein homeostasis. How proteins fold into their three-dimensional functional structure is a fundamental biological process with important relevance to human health. Misfolded and aggregated proteins are linked to multiple neurodegenerative diseases, cardiovascular disease and cystic fibrosis. To combat proteotoxic stress, cells deploy an array of molecular chaperones that assist in the repair or removal of misfolded proteins.

Hsp70, an evolutionarily conserved molecular chaperone, promotes protein folding and helps maintain them in a functional state. Requisite co-chaperones, including nucleotide exchange factors (NEFs) strictly regulate and serve to recruit Hsp70 to distinct cellular processes or locations. In yeast and human cells, three structurally non-related cytosolic NEFs are present: Sse1 (Hsp110), Fes1 (HspBP1) and Snl1 (Bag-1). Snl1 is unique among the cytosolic NEFs as it is localized at the ER membrane with its Hsp70 binding (BAG) domain exposed to the cytosol. I discovered that Snl1 distinctly interacts with assembled ribosomes and several lines of evidence indicate that this interaction is both independent of and concurrent with binding to Hsp70 and is not dependent on membrane localization. The ribosome-binding site is identified as a short lysine-rich motif within the amino terminus of the Snl1 BAG domain distinct from the Hsp70 interaction region. In addition, I demonstrate ribosome association with the Snl1 homolog in the pathogenic fungus, Candida albicans and localize this putative NEF to a perinuclear/ER membrane, suggesting functional conservation in fungal BAG domain-containing proteins. As a first step in determining specific domain architecture in fungal BAG proteins, I present the preliminary steps of protein purification and analysis of the minimal Hsp70 binding region in in both S.cerevisiae and C. albicans Snl1.

Contrary to previous in vitro evidence which showed the Fes1 NEF to interact with both cytosolic Hsp70s, Ssa and Ssb, Fes1 is shown to interact specifically with Ssa when expressed under normal cellular conditions in S. cerevisiae. This is the first reported evidence of Hsp70 binding selectivity for a cytosolic NEF, and suggests a possible mechanism to achieve specificity in Hsp70-dependent functions. Taken together, the work presented in this dissertation highlights the striking divergence among Hsp70 co-chaperones in selecting binding partners, which may correlate with their specific roles in the cell.


chaperones, nucleotide exchange factors, Snl1, BAG domain proteins, Fes1



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.