Date of Graduation


Document Type

Dissertation (PhD)

Program Affiliation

Cancer Biology

Degree Name

Doctor of Philosophy (PhD)

Advisor/Committee Chair

Samuel C. Mok, PhD

Committee Member

Robert C. Bast, Jr., MD

Committee Member

Russell R. Broaddus, MD, PhD

Committee Member

Anil K. Sood, MD

Committee Member

Kwong Kwok Wong, PhD


Advanced stage ovarian cancer is the most lethal gynecologic malignancy. No major improvement on patient survival has been achieved in the past decade. Therefore, identification of predictive or prognostic markers and further understanding of the molecular mechanisms in ovarian cancer progression are of paramount importance.

While cancer cells have always been the targets for the identification of prognostic and predictive markers, the potential for developing new diagnosis and treatments based on the tumor supporting stromal microenvironment is relatively unexplored. Using transcriptome profiling analysis on microdissected stromal and epithelial components of normal and malignant ovarian tissues, we identified a gene signature in the fibroblastic stromal component of the tumor tissue. Among the differentially expressed genes identified in microdissected cancer associated fibroblasts, microfibrillar associated protein 5 (MFAP5), which showed 10 folds increase in expression showed significant association with poorer overall survival in patients with high grade serous ovarian cancer. In addition, we identified a positive correlation between stromal MFAP5 expression and intratumor microvessel density, suggested a pro-angiogenic role of MFAP5. This study aims at delineating the functional roles and mechanisms by which stromal MFAP5 modulates ovarian tumor progression and angiogenesis and investigating the potential of targeting stromal MFAP5 as therapy for ovarian cancer.

Functional studies demonstrated that MFAP5 stimulated motility and invasion potential of ovarian cancer cells and microvascular endothelial cells through the binding of αvβ3 integrin receptor. In vivo, targeting stromal MFAP5 using siRNA incorporated chitosan nanoparticles significantly reduced tumor growth, metastasis and intratumoral microvessel density. Further, pathway analyses and western blot analyses demonstrated that CAF-derived MFAP5 modulates ovarian cancer cell motility and invasion potential through the calcium dependent FAK/CREB/TNNC1 signaling pathway and MFAP5 enhanced endothelial cell motility potential and permeability via focal adhesion and stress fiber formation by activating the calcium dependent FAK/ERK/LPP signaling pathway. Finally, monoclonal anti-MFAP5 antibodies were developed. These antibodies demonstrated inhibitory effects on tumor growth and improved paclitaxel bioavailability via the reduction of intratumoral microvessel leakiness.

To conclude, our results demonstrated the important roles of MFAP5 in promoting ovarian tumor progression and the potential of targeting stromal MFAP5 as a novel therapeutic approach for ovarian cancer.


MFAP5, Ovarian Cancer, Tumor microenvironment, Cancer associated fibroblast, Angiogenesis, Monoclonal antibody



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.