Date of Graduation


Document Type

Dissertation (PhD)

Program Affiliation

Human and Molecular Genetics

Degree Name

Doctor of Philosophy (PhD)

Advisor/Committee Chair

Jacqueline T. Hecht, PhD

Committee Member

Hope Northrup, MD

Committee Member

Gil Cote, PhD

Committee Member

Karen Storthz, PhD

Committee Member

James Hixson, PhD


Isolated clubfoot, a common birth defect occurring in more than 135,000 livebirths worldwide each year, is associated with significant health care and financial burdens. Clubfoot is defined by forefoot adduction, hindfoot varus, midfoot cavus and hindfoot equinus. Isolated clubfoot, which is the focus of these studies, is distinct from syndromic clubfoot because there are no other associated malformations. Population, family, twin and segregation analysis studies provide evidence that genetic and environmental factors play an etiologic role in isolated clubfoot. The studies described in this thesis were performed to define the role of genetic variation in isolated clubfoot. Interrogation of a deletion region associated with syndromic clubfoot, suggested that CASP8 and CASP10, two apoptotic genes, play a role in isolated clubfoot. To explore the role of apoptotic genes in clubfoot, SNPs spanning genes involved in the apoptotic pathway in the six chromosomal deletion regions, and limb patterning genes, HOXD and HOXA, were interrogated. SNPs in mitochondrial mediated apoptotic genes and several SNPs in HOXA and HOXD genes were modestly associated with clubfoot with the most significant SNP, rs3801776, located in the basal promoter of HOXA9. Several significant associations were found with SNPs in NFAT2 and TNIP2. Significant gene interactions were detected between SNPs in HOX and apoptotic genes. These findings suggest a model for clubfoot in which variation in one gene is not sufficient to cause the malformation but requires variation several genes to perturb protein expression sufficiently to alter muscle and foot development. These results significantly impact our knowledge base by delineating underlying mechanisms causing clubfoot.


genotyping, clubfoot, complex disease, limb development



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.