Student and Faculty Publications
Publication Date
1-1-2024
Journal
Radiology Artificial Intelligence
Abstract
Purpose To present results from a literature survey on practices in deep learning segmentation algorithm evaluation and perform a study on expert quality perception of brain tumor segmentation. Materials and Methods A total of 180 articles reporting on brain tumor segmentation algorithms were surveyed for the reported quality evaluation. Additionally, ratings of segmentation quality on a four-point scale were collected from medical professionals for 60 brain tumor segmentation cases. Results Of the surveyed articles, Dice score, sensitivity, and Hausdorff distance were the most popular metrics to report segmentation performance. Notably, only 2.8% of the articles included clinical experts' evaluation of segmentation quality. The experimental results revealed a low interrater agreement (Krippendorff α, 0.34) in experts' segmentation quality perception. Furthermore, the correlations between the ratings and commonly used quantitative quality metrics were low (Kendall tau between Dice score and mean rating, 0.23; Kendall tau between Hausdorff distance and mean rating, 0.51), with large variability among the experts. Conclusion The results demonstrate that quality ratings are prone to variability due to the ambiguity of tumor boundaries and individual perceptual differences, and existing metrics do not capture the clinical perception of segmentation quality.
Keywords
Brain Tumor Segmentation, Deep Learning Algorithms, Glioblastoma, Cancer, Machine Learning
Included in
Bioinformatics Commons, Biomedical Informatics Commons, Medical Sciences Commons, Neoplasms Commons, Oncology Commons, Radiology Commons
Comments
Supplemental material is available
PMID: 38197800