
Faculty, Staff and Student Publications
Publication Date
9-1-2022
Abstract
PURPOSE: The benefit of radiation therapy for pancreatic ductal adenocarcinoma (PDAC) remains unclear. We hypothesized that a new mechanistic mathematical model of chemotherapy and radiation response could predict clinical outcomes a priori, using a previously described baseline measurement of perfusion from computed tomography scans, normalized area under the enhancement curve (nAUC).
METHODS AND MATERIALS: We simplified an existing mass transport model that predicted cancer cell death by replacing previously unknown variables with averaged direct measurements from randomly selected pathologic sections of untreated PDAC. This allowed using nAUC as the sole model input to approximate tumor perfusion. We then compared the predicted cancer cell death to the actual cell death measured from corresponding resected tumors treated with neoadjuvant chemoradiation in a calibration cohort (n = 80) and prospective cohort (n = 25). After calibration, we applied the model to 2 separate cohorts for pathologic and clinical associations: targeted therapy cohort (n = 101), cetuximab/bevacizumab + radiosensitizing chemotherapy, and standard chemoradiation cohort (n = 81), radiosensitizing chemotherapy to 50.4 Gy in 28 fractions.
RESULTS: We established the relationship between pretreatment computed v nAUC to pathologically verified blood volume fraction of the tumor (r = 0.65; P = .009) and fractional tumor cell death (r = 0.97-0.99; P < .0001) in the calibration and prospective cohorts. On multivariate analyses, accounting for traditional covariates, nAUC independently associated with overall survival in all cohorts (mean hazard ratios, 0.14-0.31). Receiver operator characteristic analyses revealed discrimination of good and bad prognostic groups in the cohorts with area under the curve values of 0.64 to 0.71.
CONCLUSIONS: This work presents a new mathematical modeling approach to predict clinical response from chemotherapy and radiation for PDAC. Our findings indicate that oxygen/drug diffusion strongly influences clinical responses and that nAUC is a potential tool to select patients with PDAC for radiation therapy.
Keywords
Calibration, Carcinoma, Pancreatic Ductal, Humans, Pancreatic Neoplasms, Prospective Studies
DOI
10.1016/j.ijrobp.2022.04.044
PMID
35643254
PMCID
PMC10042520
PubMedCentral® Posted Date
3-27-2023
PubMedCentral® Full Text Version
Author MSS
Published Open-Access
yes
Included in
Bioinformatics Commons, Biomedical Informatics Commons, Medical Sciences Commons, Oncology Commons