Faculty, Staff and Student Publications
Publication Date
8-15-2023
Journal
Cancers
Abstract
We introduce tumor connectomics, a novel MRI-based complex graph theory framework that describes the intricate network of relationships within the tumor and surrounding tissue, and combine this with multiparametric radiomics (mpRad) in a machine-learning approach to distinguish radiation necrosis (RN) from true progression (TP). Pathologically confirmed cases of RN vs. TP in brain metastases treated with SRS were included from a single institution. The region of interest was manually segmented as the single largest diameter of the T1 post-contrast (T1C) lesion plus the corresponding area of T2 FLAIR hyperintensity. There were 40 mpRad features and 6 connectomics features extracted, as well as 5 clinical and treatment factors. We developed an Integrated Radiomics Informatics System (IRIS) based on an Isomap support vector machine (IsoSVM) model to distinguish TP from RN using leave-one-out cross-validation. Class imbalance was resolved with differential misclassification weighting during model training using the IRIS. In total, 135 lesions in 110 patients were analyzed, including 43 cases (31.9%) of pathologically proven RN and 92 cases (68.1%) of TP. The top-performing connectomics features were three centrality measures of degree, betweenness, and eigenvector centralities. Combining these with the 10 top-performing mpRad features, an optimized IsoSVM model was able to produce a sensitivity of 0.87, specificity of 0.84, AUC-ROC of 0.89 (95% CI: 0.82-0.94), and AUC-PR of 0.94 (95% CI: 0.87-0.97).
Keywords
brain metastases, connectomics, machine learning, radiomics, radionecrosis, radiosurgery