Publication Date



Scientific Reports


Tumors are comprised of subpopulations of cancer cells that harbor distinct genetic profiles and phenotypes that evolve over time and during treatment. By reconstructing the course of cancer evolution, we can understand the acquisition of the malignant properties that drive tumor progression. Unfortunately, recovering the evolutionary relationships of individual cancer cells linked to their phenotypes remains a difficult challenge. To address this need, we have developed PhylinSic, a method that reconstructs the phylogenetic relationships among cells linked to their gene expression profiles from single cell RNA-sequencing (scRNA-Seq) data. This method calls nucleotide bases using a probabilistic smoothing approach and then estimates a phylogenetic tree using a Bayesian modeling algorithm. We showed that PhylinSic identified evolutionary relationships underpinning drug selection and metastasis and was sensitive enough to identify subclones from genetic drift. We found that breast cancer tumors resistant to chemotherapies harbored multiple genetic lineages that independently acquired high K-Ras and β-catenin, suggesting that therapeutic strategies may need to control multiple lineages to be durable. These results demonstrated that PhylinSic can reconstruct evolution and link the genotypes and phenotypes of cells across monophyletic tumors using scRNA-Seq.


Algorithms, Bayes Theorem, beta Catenin, Breast Neoplasms, Cell Lineage, Genetic Drift, Probability, Single-Cell Gene Expression Analysis, Genotype, Phenotype, Datasets as Topic



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.