Faculty, Staff and Student Publications

Publication Date

1-23-2024

Journal

ACS Nano

Abstract

Nanoparticle delivery to solid tumors is a prime challenge in nanomedicine. Here, we approach this challenge through the lens of biogeochemistry, the field that studies the flow of chemical elements within ecosystems as manipulated by living cellular organisms and their environments. We leverage biogeochemistry concepts related to gold cycling against pancreatic cancer, considering mammalian organisms as drivers for gold nanoparticle biosynthesis. Sequestration of gold nanoparticles within tumors has been demonstrated as an effective strategy to enhance radiotherapy; however, the desmoplasia of pancreatic cancer impedes nanoparticle delivery. Our strategy overcomes this barrier by applying an atomic-scale agent, ionic gold, for intratumoral gold nanoparticle biosynthesis. Our comprehensive studies showed the cancer-specific synthesis of gold nanoparticles from externally delivered gold ions in vitro and in a murine pancreatic cancer model in vivo; a substantial colocalization of gold nanoparticles (GNPs) with cancer cell nuclei in vitro and in vivo; a strong radiosensitization effect by the intracellularly synthesized GNPs; a uniform distribution of in situ synthesized GNPs throughout the tumor volume; a nearly 40-day total suppression of tumor growth in animal models of pancreatic cancer treated with a combination of gold ions and radiation that was also associated with a significantly higher median survival versus radiation alone (235 vs 102 days, respectively).

Keywords

biomineralization, gold nanoparticles, in situ therapies, radiosensitization, pancreatic cancer

Included in

Neurosurgery Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.