Faculty, Staff and Student Publications
Publication Date
9-1-2022
Journal
The Protein Journal
Abstract
The newly emerging SARS-CoV-2 variants are potential threat and posing new challenges for medical intervention due to high transmissibility and escaping neutralizing antibody (NAb) responses. Many of these variants have mutations in the receptor binding domain (RBD) of SARS-CoV-2 spike protein that interacts with the host cell receptor. Rapid mutation in the RBD through natural selection to improve affinity for host receptor and antibody pressure from vaccinated or infected individual will greatly impact the presently adopted strategies for developing interventions. Understanding the nature of mutations and how they impact the biophysical, biochemical and immunological properties of the RBD will help immensely to improve the intervention strategies. To understand the impact of mutation on the protease sensitivity, thermal stability, affinity for the receptor and immune response, we prepared several mutants of soluble RBD that belong to the variants of concern (VoCs) and interest (VoIs) and characterize them. Our results show that the mutations do not impact the overall structure of the RBD. However, the mutants showed increase in the thermal melting point, few mutants were more sensitive to protease degradation, most of them have enhanced affinity for ACE2 and some of them induced better immune response compared to the parental RBD.
Keywords
COVID-19, Humans, Mutation, Peptide Hydrolases, Protein Binding, SARS-CoV-2, Spike Glycoprotein, Coronavirus
Included in
Maternal and Child Health Commons, Obstetrics and Gynecology Commons, Women's Health Commons
Comments
The online version contains supplementary material available at 10.1007/s10930-022-10073-6.
PMID: 36048314