Faculty, Staff and Student Publications

Publication Date

9-26-2022

Journal

Polymers

Abstract

Polymer electrolyte membrane (PEM) fuel cells have the potential to reduce our energy consumption, pollutant emissions, and dependence on fossil fuels. To achieve a wide range of commercial PEMs, many efforts have been made to create novel polymer-based materials that can transport protons under anhydrous conditions. In this study, cross-linked poly(vinyl) alcohol (PVA)/poly(ethylene) glycol (PEG) membranes with varying alumina (Al2O3) content were synthesized using the solvent solution method. Wide-angle X-ray diffraction (XRD), water uptake, ion exchange capacity (IEC), and proton conductivity were then used to characterize the membranes. XRD results showed that the concentration of Al2O3 affected the degree of crystallinity of the membranes, with 0.7 wt.% Al2O3 providing the lowest crystallinity. Water uptake was discovered to be dependent not only on the Al2O3 group concentration (SSA content) but also on SSA, which influenced the hole volume size in the membranes. The ionic conductivity measurements provided that the samples were increased by SSA to a high value (0.13 S/m) at 0.7 wt.% Al2O3. Furthermore, the ionic conductivity of polymers devoid of SSA tended to increase as the Al2O3 concentration increased. The positron annihilation lifetimes revealed that as the Al2O3 concentration increased, the hole volume content of the polymer without SSA also increased. However, it was densified with SSA for the membrane. According to the findings of the study, PVA/PEG/SSA/0.7 wt.% Al2O3 might be employed as a PEM with high proton conductivity for fuel cell applications.

Keywords

polymer electrolyte membrane, positron annihilation lifetime, hole volume, fuel cell, cross-linked PVA, Al2O3, proton conductivity, water uptake

Comments

PMID: 36235977

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.