Faculty, Staff and Student Publications
Publication Date
7-6-2023
Journal
Bioengineering
Abstract
Neuromuscular function is thought to contribute to posttraumatic osteoarthritis (PTOA) risk in anterior cruciate ligament (ACL)-reconstructed (ACLR) patients, but sensitive and easy-to-use tools are needed to discern whether complex muscle activation strategies are beneficial or maladaptive. Using an electromyography (EMG) signal analysis technique coupled with a machine learning approach, we sought to: (1) identify whether ACLR muscle activity patterns differed from those of healthy controls, and (2) explore which combination of patient outcome measures (thigh muscle girth, knee laxity, hop distance, and activity level) predicted the extent of osteoarthritic changes via magnetic resonance imaging (MRI) in ACLR patients. Eleven ACLR patients 10-15 years post-surgery and 12 healthy controls performed a hop activity while lower limb muscle EMG was recorded bilaterally. Osteoarthritis was evaluated based on MRI. ACLR muscle activity patterns were bilaterally symmetrical and differed from those of healthy controls, suggesting the presence of a global adaptation strategy. Smaller ipsilateral thigh muscle girth was the strongest predictor of inferior MRI scores. The ability of our EMG analysis approach to detect meaningful neuromuscular differences that could ultimately be related to thigh muscle girth provides the foundation to further investigate a direct link between muscle activation patterns and PTOA risk.
Keywords
anterior cruciate ligament, reconstruction, neuromuscular function, electromyography, wavelet analysis, artificial intelligence, osteoarthritis
Comments
PMID: 37508839