Faculty, Staff and Student Publications

Publication Date

6-1-2023

Journal

Neurocritical Care

Abstract

BACKGROUND: Microglia are a primary mediator of the neuroinflammatory response to neurologic injury, such as that in traumatic brain injury. Their response includes changes to their cytokine expression, metabolic profile, and immunophenotype. Dexmedetomidine (DEX) is an α

METHODS: Primary microglia were isolated from Sprague-Dawley rats and cultured. Microglia were activated using multiple mediators: lipopolysaccharide (LPS), polyinosinic-polycytidylic acid (Poly I:C), and traumatic brain injury damage-associated molecular patterns (DAMP) from a rat that sustained a prior controlled cortical impact injury. After activation, cultures were treated with DEX. At the 24-h interval, the cell supernatant and cells were collected for the following studies: cytokine expression (tumor necrosis factor-α [TNFα], interleukin-10 [IL-10]) via enzyme-linked immunosorbent assay, 6-phosphofructokinase enzyme activity assay, and immunophenotype profiling with flow cytometry. Cytokine expression and metabolic enzyme activity data were analyzed using two-way analysis of variance. Cell surface marker expression was analyzed using FlowJo software.

RESULTS: In LPS-treated cultures, DEX treatment decreased the expression of TNFα from microglia (mean difference = 121.5 ± 15.96 pg/mL; p < 0.0001). Overall, DEX-treated cultures had a lower expression of IL-10 than nontreated cultures (mean difference = 39.33 ± 14.50 pg/mL, p < 0.0001). DEX decreased IL-10 expression in LPS-stimulated microglia (mean difference = 74.93 ± 12.50 pg/mL, p = 0.0039) and Poly I:C-stimulated microglia (mean difference = 23.27 ± 6.405 pg/mL, p = 0.0221). In DAMP-stimulated microglia, DEX decreased the activity of 6-phosphofructokinase (mean difference = 18.79 ± 6.508 units/mL; p = 0.0421). The microglial immunophenotype was altered to varying degrees with different inflammatory stimuli and DEX treatment.

CONCLUSIONS: DEX may alter the neuroinflammatory response of microglia. By altering the microglial profile, DEX may affect the progression of neurologic injury.

Keywords

Rats, Animals, Dexmedetomidine, Interleukin-10, Microglia, Tumor Necrosis Factor-alpha, Rats, Sprague-Dawley, Lipopolysaccharides, Adrenergic alpha-2 Receptor Agonists, Cytokines, Inflammation, Brain Injuries, Traumatic, Poly I

Comments

PMID: 36418766

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.