Faculty, Staff and Student Publications

Language

English

Publication Date

11-25-2009

Journal

The Journal of Neuroscience

DOI

10.1523/JNEUROSCI.3436-09.2009

PMID

19940186

PMCID

PMC2839935

PubMedCentral® Posted Date

11-25-2009

PubMedCentral® Full Text Version

Post-print

Abstract

Gap junction proteins form the substrate for electrical coupling between neurons. These electrical synapses are widespread in the CNS and serve a variety of important functions. In the retina, connexin 36 (Cx36) gap junctions couple AII amacrine cells and are a requisite component of the high-sensitivity rod photoreceptor pathway. AII amacrine cell coupling strength is dynamically regulated by background light intensity, and uncoupling is thought to be mediated by dopamine signaling via D(1)-like receptors. One proposed mechanism for this uncoupling involves dopamine-stimulated phosphorylation of Cx36 at regulatory sites, mediated by protein kinase A. Here we provide evidence against this hypothesis and demonstrate a direct relationship between Cx36 phosphorylation and AII amacrine cell coupling strength. Dopamine receptor-driven uncoupling of the AII network results from protein kinase A activation of protein phosphatase 2A and subsequent dephosphorylation of Cx36. Protein phosphatase 1 activity negatively regulates this pathway. We also find that Cx36 gap junctions can exist in widely different phosphorylation states within a single neuron, implying that coupling is controlled at the level of individual gap junctions by locally assembled signaling complexes. This kind of synapse-by-synapse plasticity allows for precise control of neuronal coupling, as well as cell-type-specific responses dependent on the identity of the signaling complexes assembled.

Keywords

Amacrine Cells, Animals, Cell Communication, Connexins, Cyclic AMP-Dependent Protein Kinases, Dopamine, Enzyme Activation, Gap Junctions, Organ Culture Techniques, Phosphorylation, Protein Phosphatase 1, Protein Phosphatase 2, Rabbits, Retina, Signal Transduction, Synaptic Transmission, Vision, Ocular

Published Open-Access

yes

Included in

Neurosciences Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.