Faculty, Staff and Student Publications
Publication Date
11-1-2023
Journal
Alzheimer's & Dementia
Abstract
INTRODUCTION: Mutations in INPP5D, which encodes for the SH2-domain-containing inositol phosphatase SHIP-1, have recently been linked to an increased risk of developing late-onset Alzheimer's disease. While INPP5D expression is almost exclusively restricted to microglia in the brain, little is known regarding how SHIP-1 affects neurobiology or neurodegenerative disease pathogenesis.
METHODS: We generated and investigated 5xFAD Inpp5d
RESULTS: SHIP-1 deletion in microglia led to substantially enhanced recruitment of microglia to Aβ plaques, altered microglial gene expression, and marked improvements in neuronal health. Further, SHIP-1 loss enhanced microglial plaque containment and Aβ engulfment when compared to microglia from Cre-negative 5xFAD Inpp5d
DISCUSSION: These results define SHIP-1 as a pivotal regulator of microglial responses during Aβ-driven neurological disease and suggest that targeting SHIP-1 may offer a promising strategy to treat Alzheimer's disease.
HIGHLIGHTS: Inpp5d deficiency in microglia increases plaque-associated microglia numbers. Loss of Inpp5d induces activation and phagocytosis transcriptional pathways. Plaque encapsulation and engulfment by microglia are enhanced with Inpp5d deletion. Genetic ablation of Inpp5d protects against plaque-induced neuronal dystrophy.
Keywords
Alzheimer’s disease, microglia, SHIP-1, INPP5D, amyloid beta, amyloidosis, neuroimmunology, disease-associated microglia, neurodegenerative disease
Comments
Supplementary Materials
PMID: 37061460