Faculty, Staff and Student Publications

Publication Date

11-1-2022

Journal

Oncogene

Abstract

Signal transducer and activator of transcription 5 (STAT5) promotes cell survival and instigates breast tumor formation, and in the normal breast it also drives alveolar differentiation and lactogenesis. However, whether STAT5 drives a differentiated phenotype in breast tumorigenesis and therefore impacts cancer spread and metastasis is unclear. We found in two genetically engineered mouse models of breast cancer that constitutively activated Stat5a (Stat5aca) caused precancerous mammary epithelial cells to become lactogenic and evolve into tumors with diminished potential to metastasize. We also showed that STAT5aca reduced the migratory and invasive ability of human breast cancer cell lines in vitro. Furthermore, we demonstrated that STAT5aca overexpression in human breast cancer cells lowered their metastatic burden in xenografted mice. Moreover, RPPA, Western blotting, and studies of ChIPseq data identified several EMT drivers regulated by STAT5. In addition, bioinformatic studies detected a correlation between STAT5 activity and better prognosis of breast cancer patients. Together, we conclude that STAT5 activation during mammary tumorigenesis specifies a tumor phenotype of lactogenic differentiation, suppresses EMT, and diminishes potential for subsequent metastasis.

Keywords

STAT5, Breast cancer, Differentiation, Metastasis, Epithelial-mesenchymal transition

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.