Faculty, Staff and Student Publications

Publication Date

9-30-2022

Journal

Statistics in Medicine

Abstract

Neuroimaging techniques have been increasingly used to understand the neural biology of aging brains. The neuroimaging variables from distinct brain locations and modalities can exhibit age-related patterns that reflect localized neural decline. However, it is a challenge to identify the impacts of risk factors (eg, mental disorders) on multivariate imaging variables while simultaneously accounting for the dependence structure and nonlinear age trajectories using existing tools. We propose a mixed-effects model to address this challenge by building random effects based on the latent brain aging status. We develop computationally efficient algorithms to estimate the parameters of new random effects. The simulations show that our approach provides accurate parameter estimates, improves the inference efficiency, and reduces the root mean square error compared to existing methods. We further apply this method to the UK Biobank data to investigate the effects of tobacco smoking on the white matter integrity of the entire brain during aging and identify the adverse effects on white matter integrity with multiple fiber tracts.

Keywords

Aging, Algorithms, Brain, Diffusion Tensor Imaging, Humans, White Matter

Comments

PMID: 36106648

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.