Faculty, Staff and Student Publications

Publication Date

4-22-2024

Journal

Nature Communications

Abstract

Brain-like energy-efficient computing has remained elusive for neuromorphic (NM) circuits and hardware platform implementations despite decades of research. In this work we reveal the opportunity to significantly improve the energy efficiency of digital neuromorphic hardware by introducing NM circuits employing two-dimensional (2D) transition metal dichalcogenide (TMD) layered channel material-based tunnel-field-effect transistors (TFETs). Our novel leaky-integrate-fire (LIF) based digital NM circuit along with its Hebbian learning circuitry operates at a wide range of supply voltages, frequencies, and activity factors, enabling two orders of magnitude higher energy-efficient computing that is difficult to achieve with conventional material and/or device platforms, specifically the silicon-based 7 nm low-standby-power FinFET technology. Our innovative 2D-TFET based NM circuit paves the way toward brain-like energy-efficient computing that can unleash major transformations in future AI and data analytics platforms.

Included in

Critical Care Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.