Publication Date





Distal arthrogryposis (DA) is a collection of rare disorders that are characterized by congenital joint contractures. Most DA mutations are in muscle- and joint-related genes, and the anatomical defects originate cell-autonomously within the musculoskeletal system. However, gain-of-function mutations in PIEZO2, a principal mechanosensor in somatosensation, cause DA subtype 5 (DA5) through unknown mechanisms. We show that expression of a gain-of-function PIEZO2 mutation in proprioceptive sensory neurons that mainly innervate muscle spindles and tendons is sufficient to induce DA5-like phenotypes in mice. Overactive PIEZO2 causes anatomical defects through increased activity within the peripheral nervous system during postnatal development. Furthermore, botulinum toxin (Botox) and a dietary fatty acid that modulates PIEZO2 activity reduce DA5-like deficits. This reveals a role for somatosensory neurons: Excessive mechanosensation within these neurons disrupts musculoskeletal development.


Animals, Mice, Arthrogryposis, Contracture, Mechanotransduction, Cellular, Mutation, Sensory Receptor Cells, Ion Channels



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.