Student and Faculty Publications
Publication Date
1-1-2019
Journal
AMIA Jt Summits Transl Sci Proc
Abstract
We propose a deep learning-based multi-task learning (MTL) architecture focusing on patient mortality predictions from clinical notes. The MTL framework enables the model to learn a patient representation that generalizes to a variety of clinical prediction tasks. Moreover, we demonstrate how MTL enables small but consistent gains on a single classification task (e.g., in-hospital mortality prediction) simply by incorporating related tasks (e.g., 30-day and 1-year mortality prediction) into the MTL framework. To accomplish this, we utilize a multi-level Convolutional Neural Network (CNN) associated with a MTL loss component. The model is evaluated with 3, 5, and 20 tasks and is consistently able to produce a higher-performing model than a single-task learning (STL) classifier. We further discuss the effect of the multi-task model on other clinical outcomes of interest, including being able to produce high-quality representations that can be utilized to great effect by simpler models. Overall, this study demonstrates the efficiency and generalizability of MTL across tasks that STL fails to leverage.