Faculty, Staff and Student Publications

Publication Date

2-16-2024

Journal

iScience

Abstract

Automated tools to detect large vessel occlusion (LVO) in acute ischemic stroke patients using brain computed tomography angiography (CTA) have been shown to reduce the time for treatment, leading to better clinical outcomes. There is a lot of information in a single CTA and deep learning models do not have an obvious way of being conditioned on areas most relevant for LVO detection, i.e., the vasculature structure. In this work, we compare and contrast strategies to make convolutional neural networks focus on the vasculature without discarding context information of the brain parenchyma and propose an attention-inspired strategy to encourage this. We use brain CTAs from which we obtain 3D vasculature images. Then, we compare ways of combining the vasculature and the CTA images using a general-purpose network trained to detect LVO. The results show that the proposed strategies allow to improve LVO detection and could potentially help to learn other cerebrovascular-related tasks.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.