Student and Faculty Publications

Publication Date

8-13-2022

Journal

Journal of Nanobiotechnology

Abstract

BACKGROUND: Type 1 diabetes mellitus (T1DM) is an autoimmune disease mediated by autoreactive T cells and dominated by Th1 response polarization. Insulin replacement therapy faces great challenges to this autoimmune disease, requiring highly frequent daily administration. Intriguingly, the progression of T1DM has proven to be prevented or attenuated by helminth infection or worm antigens for a relatively long term. However, the inevitable problems of low safety and poor compliance arise from infection with live worms or direct injection of antigens. Microneedles would be a promising candidate for local delivery of intact antigens, thus providing an opportunity for the clinical immunotherapy of parasitic products.

METHODS: We developed a Schistosoma japonicum-egg tip-loaded asymmetric microneedle patch (STAMP) system, which serves as a new strategy to combat TIDM. In order to improve retention time and reduce contamination risk, a specific imperfection was introduced on the STAMP (asymmetric structure), which allows the tip to quickly separate from the base layer, improving reaction time and patient's comfort. After loading Schistosoma japonicum-egg as the immune regulator, the effects of STAMP on blood glucose control and pancreatic pathological progression improvement were evaluated in vivo. Meanwhile, the immunoregulatory mechanism and biosafety of STAMP were confirmed by histopathology, qRT-PCR, ELISA and Flow cytometric analysis.

RESULTS: Here, the newly developed STAMP was able to significantly reduce blood glucose and attenuate the pancreatic injury in T1DM mice independent of the adjuvants. The isolated Schistosoma japonicum-eggs micron slowly degraded in the skin and continuously released egg antigen for at least 2 weeks, ensuring localization and safety of antigen stimulation. This phenomenon should be attributed to the shift of Th2 immune response to reduce Th1 polarization.

CONCLUSION: Our results exhibited that STAMP could significantly regulate the blood glucose level and attenuate pancreatic pathological injury in T1DM mice by balancing the Th1/Th2 immune responses, which is independent of adjuvants. This technology opens a new window for the application of parasite products in clinical immunotherapy.

Keywords

Immunotherapy, Parasites-based therapy, Asymmetric microneedle, Autoimmune mediation, Type 1 diabetes

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.