Faculty, Staff and Student Publications

Publication Date

6-17-2024

Journal

Sensors

Abstract

To tackle the intricate challenges associated with the low detection accuracy of images taken by unmanned aerial vehicles (UAVs), arising from the diverse sizes and types of objects coupled with limited feature information, we present the SRE-YOLOv8 as an advanced method. Our method enhances the YOLOv8 object detection algorithm by leveraging the Swin Transformer and a lightweight residual feature pyramid network (RE-FPN) structure. Firstly, we introduce an optimized Swin Transformer module into the backbone network to preserve ample global contextual information during feature extraction and to extract a broader spectrum of features using self-attention mechanisms. Subsequently, we integrate a Residual Feature Augmentation (RFA) module and a lightweight attention mechanism named ECA, thereby transforming the original FPN structure to RE-FPN, intensifying the network's emphasis on critical features. Additionally, an SOD (small object detection) layer is incorporated to enhance the network's ability to recognize the spatial information of the model, thus augmenting accuracy in detecting small objects. Finally, we employ a Dynamic Head equipped with multiple attention mechanisms in the object detection head to enhance its performance in identifying low-resolution targets amidst complex backgrounds. Experimental evaluation conducted on the VisDrone2021 dataset reveals a significant advancement, showcasing an impressive 9.2% enhancement over the original YOLOv8 algorithm.

Keywords

deep learning, object detection, YOLOv8, Swin Transformer, feature pyramid network, computational perception

Comments

PMID: 38931702

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.