Faculty, Staff and Student Publications

Language

English

Publication Date

2-1-2023

Journal

Critical Care Medicine

DOI

10.1097/CCM.0000000000005700

PMID

36661453

PMCID

PMC11149397

PubMedCentral® Posted Date

11-3-2024

PubMedCentral® Full Text Version

Author MSS

Abstract

Objectives: Low hemoglobin concentration impairs clinical hemostasis across several diseases. It is unclear whether hemoglobin impacts laboratory functional coagulation assessments. We evaluated the relationship of hemoglobin concentration on viscoelastic hemostatic assays in intracerebral hemorrhage (ICH) and perioperative patients admitted to an ICU.

Design: Observational cohort study and separate in vitro laboratory study.

Setting: Multicenter tertiary referral ICUs.

Patients: Two acute ICH cohorts receiving distinct testing modalities: rotational thromboelastometry (ROTEM) and thromboelastography (TEG), and a third surgical ICU cohort receiving ROTEM were evaluated to assess the generalizability of findings across disease processes and testing platforms. A separate in vitro ROTEM laboratory study was performed utilizing ICH patient blood samples.

Interventions: None.

Measurements and main results: Relationships between baseline hemoglobin and ROTEM/TEG results were separately assessed across patient cohorts using Spearman correlations and linear regression models. A separate in vitro study assessed ROTEM tracing changes after serial hemoglobin modifications from ICH patient blood samples. In both our ROTEM (n = 34) and TEG (n = 239) ICH cohorts, hemoglobin concentrations directly correlated with coagulation kinetics (ROTEM r: 0.46; p = 0.01; TEG r: 0.49; p < 0.0001) and inversely correlated with clot strength (ROTEM r: -0.52, p = 0.002; TEG r: -0.40, p < 0.0001). Similar relationships were identified in perioperative ICU admitted patients (n = 121). We continued to identify these relationships in linear regression models. When manipulating ICH patient blood samples to achieve lower hemoglobin concentrations in vitro, we similarly identified that lower hemoglobin concentrations resulted in progressively faster coagulation kinetics and greater clot strength on ROTEM tracings.

Conclusions: Lower hemoglobin concentrations have a consistent, measurable impact on ROTEM/TEG testing in ICU admitted patients, which appear to be artifactual. It is possible that patients with low hemoglobin may appear to have normal viscoelastic parameters when, in fact, they have a mild hypocoagulable state. Further work is required to determine if these tests should be corrected for a patient's hemoglobin concentration.

Keywords

Humans, Blood Coagulation Disorders, Cerebral Hemorrhage, Hemoglobins, Hemostasis, Hemostatics, Thrombelastography, Intensive Care Units, functional coagulation, hemoglobin, intracerebral hemorrhage, rotational thromboelastometry, thromboelastography

Published Open-Access

yes

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.