Faculty, Staff and Student Publications

Publication Date

5-30-2024

Journal

BMC Medical Informatics and Decision Making

Abstract

BACKGROUND: Securing adequate data privacy is critical for the productive utilization of data. De-identification, involving masking or replacing specific values in a dataset, could damage the dataset's utility. However, finding a reasonable balance between data privacy and utility is not straightforward. Nonetheless, few studies investigated how data de-identification efforts affect data analysis results. This study aimed to demonstrate the effect of different de-identification methods on a dataset's utility with a clinical analytic use case and assess the feasibility of finding a workable tradeoff between data privacy and utility.

METHODS: Predictive modeling of emergency department length of stay was used as a data analysis use case. A logistic regression model was developed with 1155 patient cases extracted from a clinical data warehouse of an academic medical center located in Seoul, South Korea. Nineteen de-identified datasets were generated based on various de-identification configurations using ARX, an open-source software for anonymizing sensitive personal data. The variable distributions and prediction results were compared between the de-identified datasets and the original dataset. We examined the association between data privacy and utility to determine whether it is feasible to identify a viable tradeoff between the two.

RESULTS: All 19 de-identification scenarios significantly decreased re-identification risk. Nevertheless, the de-identification processes resulted in record suppression and complete masking of variables used as predictors, thereby compromising dataset utility. A significant correlation was observed only between the re-identification reduction rates and the ARX utility scores.

CONCLUSIONS: As the importance of health data analysis increases, so does the need for effective privacy protection methods. While existing guidelines provide a basis for de-identifying datasets, achieving a balance between high privacy and utility is a complex task that requires understanding the data's intended use and involving input from data users. This approach could help find a suitable compromise between data privacy and utility.

Keywords

Humans, Confidentiality, Data Anonymization, Emergency Service, Hospital, Length of Stay, Republic of Korea, Male

DOI

10.1186/s12911-024-02545-9

PMID

38816848

PMCID

PMC11137882

PubMedCentral® Posted Date

5-30-2024

PubMedCentral® Full Text Version

Post-print

Published Open-Access

yes

Plum Print visual indicator of research metrics
PlumX Metrics
  • Citations
    • Citation Indexes: 1
  • Captures
    • Readers: 19
  • Mentions
    • News Mentions: 1
see details

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.