Faculty, Staff and Student Publications

Publication Date

8-14-2024

Journal

Metabolites

Abstract

Glioblastoma (GBM) is a malignant Grade VI cancer type with a median survival duration of only 8-16 months. Earlier detection of GBM could enable more effective treatment. Hyperpolarized magnetic resonance spectroscopy (HPMRS) could detect GBM earlier than conventional anatomical MRI in glioblastoma murine models. We further investigated whether artificial intelligence (A.I.) could detect GBM earlier than HPMRS. We developed a deep learning model that combines multiple modalities of cancer data to predict tumor progression, assess treatment effects, and to reconstruct in vivo metabolomic information from ex vivo data. Our model can detect GBM progression two weeks earlier than conventional MRIs and a week earlier than HPMRS alone. Our model accurately predicted in vivo biomarkers from HPMRS, and the results inferred biological relevance. Additionally, the model showed potential for examining treatment effects. Our model successfully detected tumor progression two weeks earlier than conventional MRIs and accurately predicted in vivo biomarkers using ex vivo information such as conventional MRIs, HPMRS, and tumor size data. The accuracy of these predictions is consistent with biological relevance.

DOI

10.3390/metabo14080448

PMID

39195544

PMCID

PMC11356718

PubMedCentral® Posted Date

8-14-2024

PubMedCentral® Full Text Version

Post-print

Published Open-Access

yes

Plum Print visual indicator of research metrics
PlumX Metrics
  • Usage
    • Abstract Views: 2
  • Captures
    • Readers: 3
  • Mentions
    • Blog Mentions: 1
    • News Mentions: 1
see details

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.