Faculty, Staff and Student Publications

Publication Date

1-1-2023

Journal

AMIA Summits on Translational Science Proceedings

Abstract

In the era of big data, there is an increasing need for healthcare providers, communities, and researchers to share data and collaborate to improve health outcomes, generate valuable insights, and advance research. The Health Insurance Portability and Accountability Act of 1996 (HIPAA) is a federal law designed to protect sensitive health information by defining regulations for protected health information (PHI). However, it does not provide efficient tools for detecting or removing PHI before data sharing. One of the challenges in this area of research is the heterogeneous nature of PHI fields in data across different parties. This variability makes rule-based sensitive variable identification systems that work on one database fail on another. To address this issue, our paper explores the use of machine learning algorithms to identify sensitive variables in structured data, thus facilitating the de-identification process. We made a key observation that the distributions of metadata of PHI fields and non-PHI fields are very different. Based on this novel finding, we engineered over 30 features from the metadata of the original features and used machine learning to build classification models to automatically identify PHI fields in structured Electronic Health Record (EHR) data. We trained the model on a variety of large EHR databases from different data sources and found that our algorithm achieves 99% accuracy when detecting PHI-related fields for unseen datasets. The implications of our study are significant and can benefit industries that handle sensitive data.

Keywords

United States, Humans, Confidentiality, Medical Records Systems, Computerized, Health Insurance Portability and Accountability Act, Algorithms, Machine Learning, Electronic Health Records, De-identification, Protected health information (PHI), Electronic health records (EHR), Machine learning algorithms

PMID

38222389

PMCID

PMC10785837

Published Open-Access

yes

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.