Faculty, Staff and Student Publications

Publication Date

6-1-2022

Journal

The American Journal of Medicine

Abstract

BACKGROUND: Unnecessary laboratory tests contribute to iatrogenic harm and are a major source of waste in the health care system. We previously developed a machine learning algorithm to help clinicians identify unnecessary laboratory tests, but it has not been externally validated. In this study, we externally validate our machine learning algorithm.

METHODS: To externally validate the machine learning algorithm that was originally trained on the Medical Information Mart for Intensive Care (MIMIC) III database, we tested the algorithm in a separate institution. We identified and abstracted data for all patients older than 18 years admitted to the intensive care unit at Memorial Hermann Hospital in Houston, Texas (MHH) from January 1, 2020 to November 13, 2020. Using the transfer learning style, we performed external validation of the machine learning algorithm.

RESULTS: A total of 651 MHH patients were included. The model performed well in predicting abnormality (area under the curve [AUC] 0.98 for MIMIC III and 0.89 for MHH). The model performed similarly in predicting transitions from normal laboratory range to abnormal (AUC 0.71 for MIMIC III and 0.70 for MHH). The performance of the model in predicting the actual laboratory value was also similar in the MIMIC III (accuracy 0.41) and MHH data (0.45).

CONCLUSIONS: We externally validated the machine learning model and showed that the model performed similarly, supporting the generalizability to other settings. While this model demonstrated good performance for predicting abnormal labs and transitions, it does not perform well enough for prediction of laboratory values in most clinical applications.

Keywords

Algorithms, Area Under Curve, Critical Care, Humans, Intensive Care Units, Machine Learning

DOI

10.1016/j.amjmed.2021.12.020

PMID

35114179

PMCID

PMC11543189

PubMedCentral® Posted Date

11-7-2024

PubMedCentral® Full Text Version

Author MSS

Published Open-Access

yes

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.