Faculty, Staff and Student Publications

Publication Date

9-1-2024

Journal

Journal of the American Medical Informatics Association

Abstract

OBJECTIVES: The rapid expansion of biomedical literature necessitates automated techniques to discern relationships between biomedical concepts from extensive free text. Such techniques facilitate the development of detailed knowledge bases and highlight research deficiencies. The LitCoin Natural Language Processing (NLP) challenge, organized by the National Center for Advancing Translational Science, aims to evaluate such potential and provides a manually annotated corpus for methodology development and benchmarking.

MATERIALS AND METHODS: For the named entity recognition (NER) task, we utilized ensemble learning to merge predictions from three domain-specific models, namely BioBERT, PubMedBERT, and BioM-ELECTRA, devised a rule-driven detection method for cell line and taxonomy names and annotated 70 more abstracts as additional corpus. We further finetuned the T0pp model, with 11 billion parameters, to boost the performance on relation extraction and leveraged entites' location information (eg, title, background) to enhance novelty prediction performance in relation extraction (RE).

RESULTS: Our pioneering NLP system designed for this challenge secured first place in Phase I-NER and second place in Phase II-relation extraction and novelty prediction, outpacing over 200 teams. We tested OpenAI ChatGPT 3.5 and ChatGPT 4 in a Zero-Shot setting using the same test set, revealing that our finetuned model considerably surpasses these broad-spectrum large language models.

DISCUSSION AND CONCLUSION: Our outcomes depict a robust NLP system excelling in NER and RE across various biomedical entities, emphasizing that task-specific models remain superior to generic large ones. Such insights are valuable for endeavors like knowledge graph development and hypothesis formulation in biomedical research.

Keywords

Natural Language Processing, Data Mining, Machine Learning, Humans, named entity recognition, relation extraction, large language model, ensemble learning, knowledge base

DOI

10.1093/jamia/ocae061

PMID

38520725

PMCID

PMC11339500

PubMedCentral® Posted Date

3-23-2024

PubMedCentral® Full Text Version

Post-print

Published Open-Access

yes

Plum Print visual indicator of research metrics
PlumX Metrics
  • Citations
    • Citation Indexes: 5
  • Usage
    • Downloads: 7
    • Abstract Views: 4
  • Captures
    • Readers: 46
see details

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.