Faculty, Staff and Student Publications

Publication Date

5-13-2022

Journal

Bioinformatics

Abstract

MOTIVATION: Evaluating the blood-brain barrier (BBB) permeability of drug molecules is a critical step in brain drug development. Traditional methods for the evaluation require complicated in vitro or in vivo testing. Alternatively, in silico predictions based on machine learning have proved to be a cost-efficient way to complement the in vitro and in vivo methods. However, the performance of the established models has been limited by their incapability of dealing with the interactions between drugs and proteins, which play an important role in the mechanism behind the BBB penetrating behaviors. To address this limitation, we employed the relational graph convolutional network (RGCN) to handle the drug-protein interactions as well as the properties of each individual drug.

RESULTS: The RGCN model achieved an overall accuracy of 0.872, an area under the receiver operating characteristic (AUROC) of 0.919 and an area under the precision-recall curve (AUPRC) of 0.838 for the testing dataset with the drug-protein interactions and the Mordred descriptors as the input. Introducing drug-drug similarity to connect structurally similar drugs in the data graph further improved the testing results, giving an overall accuracy of 0.876, an AUROC of 0.926 and an AUPRC of 0.865. In particular, the RGCN model was found to greatly outperform the LightGBM base model when evaluated with the drugs whose BBB penetration was dependent on drug-protein interactions. Our model is expected to provide high-confidence predictions of BBB permeability for drug prioritization in the experimental screening of BBB-penetrating drugs.

AVAILABILITY AND IMPLEMENTATION: The data and the codes are freely available at https://github.com/dingyan20/BBB-Penetration-Prediction.

Keywords

Biological Transport, Blood-Brain Barrier, Brain, Machine Learning, Permeability, Proteins

DOI

10.1093/bioinformatics/btac211

PMID

35561199

PMCID

PMC9113341

PubMedCentral® Posted Date

4-7-2022

PubMedCentral® Full Text Version

Post-print

Published Open-Access

yes

btac211_supplementary_data.docx (15 kB)
Supplementary Information

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.