Faculty, Staff and Student Publications

Publication Date

6-6-2022

Journal

Studies in Health Technology and Informatics

Abstract

Social media has become a predominant source of information for many health care consumers. However, false and misleading information is a pervasive problem in this context. Specifically, health-related misinformation has become a significant public health challenge, impeding the effectiveness of public health awareness campaigns and resulting in suboptimal responsiveness to the communication of legitimate risk-related information. Little is known about the mechanisms driving the seeding and spreading of such information. In this paper, we specifically examine COVID-19 tweets which attempt to correct misinformation. We employ a mixed-methods approach comprising qualitative coding, deep learning classification, and computerized text analysis to understand the manifestation of speech acts and other linguistic variables. Results indicate significant differences in linguistic variables (e.g., positive emotion, tone, authenticity) of corrective tweets and their dissemination level. Our deep learning classifier has a macro average performance of 0.82. Implications for effective and persuasive misinformation correction efforts are discussed.

Keywords

COVID-19, Communication, Humans, Linguistics, Public Health, Social Media

DOI

10.3233/SHTI220139

PMID

35673078

PMCID

PMC11420648

PubMedCentral® Posted Date

9-24-2024

PubMedCentral® Full Text Version

Author MSS

Published Open-Access

yes

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.