Faculty, Staff and Student Publications

Publication Date

1-1-2023

Journal

Computational and Structural Biotechnology Journal

Abstract

The assessment of functional effect of amino acid variants is a critical biological problem in proteomics for clinical medicine and protein engineering. Although natively occurring variants offer insights into deleterious variants, high-throughput deep mutational experiments enable comprehensive investigation of amino acid variants for a given protein. However, these mutational experiments are too expensive to dissect millions of variants on thousands of proteins. Thus, computational approaches have been proposed, but they heavily rely on hand-crafted evolutionary conservation, limiting their accuracy. Recent advancement in transformers provides a promising solution to precisely estimate the functional effects of protein variants on high-throughput experimental data. Here, we introduce a novel deep learning model, namely Rep2Mut-V2, which leverages learned representation from transformer models. Rep2Mut-V2 significantly enhances the prediction accuracy for 27 types of measurements of functional effects of protein variants. In the evaluation of 38 protein datasets with 118,933 single amino acid variants, Rep2Mut-V2 achieved an average Spearman's correlation coefficient of 0.7. This surpasses the performance of six state-of-the-art methods, including the recently released methods ESM, DeepSequence and EVE. Even with limited training data, Rep2Mut-V2 outperforms ESM and DeepSequence, showing its potential to extend high-throughput experimental analysis for more protein variants to reduce experimental cost. In conclusion, Rep2Mut-V2 provides accurate predictions of the functional effects of single amino acid variants of protein coding sequences. This tool can significantly aid in the interpretation of variants in human disease studies.

Keywords

Functional effect, Deep learning, Single amino acid variant, Precise estimation, High-throughput experiments

DOI

10.1016/j.csbj.2023.11.017

PMID

38074467

PMCID

PMC10709104

PubMedCentral® Posted Date

11-10-2023

PubMedCentral® Full Text Version

Post-print

Published Open-Access

yes

ga1.jpg (67 kB)
Graphical Abstract

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.