Faculty, Staff and Student Publications

Publication Date

10-1-2022

Journal

Computational Statistics & Data Analysis

Abstract

In longitudinal cohort studies, it is often of interest to predict the risk of a terminal clinical event using longitudinal predictor data among subjects at risk by the time of the prediction. The at-risk population changes over time; so does the association between predictors and the outcome, as well as the accumulating longitudinal predictor history. The dynamic nature of this prediction problem has received increasing interest in the literature, but computation often poses a challenge. The widely used joint model of longitudinal and survival data often comes with intensive computation and excessive model fitting time, due to numerical optimization and the analytically intractable high-dimensional integral in the likelihood function. This problem is exacerbated when the model is fit to a large dataset or the model involves multiple longitudinal predictors with nonlinear trajectories. This challenge can be addressed from an algorithmic perspective, by a novel two-stage estimation procedure, and from a computing perspective, by Graphics Processing Unit (GPU) programming. The latter is implemented through PyTorch, an emerging deep learning framework. The numerical studies demonstrate that the proposed algorithm and software can substantially speed up the estimation of the joint model, particularly with large datasets. The numerical studies also concluded that accounting for nonlinearity in longitudinal predictor trajectories can improve the prediction accuracy in comparison to joint modeling that ignore nonlinearity.

Keywords

electronic health records, Graphics Processing Unit (GPU) computing, joint modeling, longitudinal and survival data, numerical integration, parallel computing

DOI

10.1016/j.csda.2022.107528

PMID

39257897

PMCID

PMC11384271

PubMedCentral® Posted Date

9-10-2024

PubMedCentral® Full Text Version

Author MSS

Published Open-Access

yes

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.