Faculty, Staff and Student Publications

Publication Date

5-1-2023

Journal

PLOS Computer Biology

Abstract

Lung adenocarcinoma (LUAD) is a deadly tumor with dynamic evolutionary process. Although much endeavors have been made in identifying the temporal patterns of cancer progression, it remains challenging to infer and interpret the molecular alterations associated with cancer development and progression. To this end, we developed a computational approach to infer the progression trajectory based on cross-sectional transcriptomic data. Analysis of the LUAD data using our approach revealed a linear trajectory with three different branches for malignant progression, and the results showed consistency in three independent cohorts. We used the progression model to elucidate the potential molecular events in LUAD progression. Further analysis showed that overexpression of BUB1B, BUB1 and BUB3 promoted tumor cell proliferation and metastases by disturbing the spindle assembly checkpoint (SAC) in the mitosis. Aberrant mitotic spindle checkpoint signaling appeared to be one of the key factors promoting LUAD progression. We found the inferred cancer trajectory allows to identify LUAD susceptibility genetic variations using genome-wide association analysis. This result shows the opportunity for combining analysis of candidate genetic factors with disease progression. Furthermore, the trajectory showed clear evident mutation accumulation and clonal expansion along with the LUAD progression. Understanding how tumors evolve and identifying mutated genes will help guide cancer management. We investigated the clonal architectures and identified distinct clones and subclones in different LUAD branches. Validation of the model in multiple independent data sets and correlation analysis with clinical results demonstrate that our method is effective and unbiased.

Keywords

Humans, Lung Neoplasms, Transcriptome, Adenocarcinoma, Genome-Wide Association Study, Cross-Sectional Studies, Adenocarcinoma of Lung

DOI

10.1371/journal.pcbi.1011122

PMID

37228122

PMCID

PMC10246837

PubMedCentral® Posted Date

5-25-2023

PubMedCentral® Full Text Version

Post-print

Published Open-Access

yes

Plum Print visual indicator of research metrics
PlumX Metrics
  • Citations
    • Citation Indexes: 4
  • Usage
    • Downloads: 1
  • Captures
    • Readers: 5
see details

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.