Faculty, Staff and Student Publications

Language

English

Publication Date

10-1-2024

Journal

Journal of the American Medical Informatics Association

DOI

10.1093/jamia/ocae187

PMID

39078287

PMCID

PMC11413449

PubMedCentral® Posted Date

7-30-2024

PubMedCentral® Full Text Version

Post-print

Abstract

Objective: Conduct a scoping review of research studies that describe rule-based clinical decision support (CDS) malfunctions.

Materials and methods: In April 2022, we searched three bibliographic databases (MEDLINE, CINAHL, and Embase) for literature referencing CDS malfunctions. We coded the identified malfunctions according to an existing CDS malfunction taxonomy and added new categories for factors not already captured. We also extracted and summarized information related to the CDS system, such as architecture, data source, and data format.

Results: Twenty-eight articles met inclusion criteria, capturing 130 malfunctions. Architectures used included stand-alone systems (eg, web-based calculator), integrated systems (eg, best practices alerts), and service-oriented architectures (eg, distributed systems like SMART or CDS Hooks). No standards-based CDS malfunctions were identified. The "Cause" category of the original taxonomy includes three new types (organizational policy, hardware error, and data source) and two existing causes were expanded to include additional layers. Only 29 malfunctions (22%) described the potential impact of the malfunction on patient care.

Discussion: While a substantial amount of research on CDS exists, our review indicates there is a limited focus on CDS malfunctions, with even less attention on malfunctions associated with modern delivery architectures such as SMART and CDS Hooks.

Conclusion: CDS malfunctions can and do occur across several different care delivery architectures. To account for advances in health information technology, existing taxonomies of CDS malfunctions must be continually updated. This will be especially important for service-oriented architectures, which connect several disparate systems, and are increasing in use.

Keywords

Decision Support Systems, Clinical, Humans, Clinical Decision Rules, decision support systems, clinical, equipment failure analysis, health information technology, health information interoperability/standards, software

Published Open-Access

yes

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.