Faculty, Staff and Student Publications

Language

English

Publication Date

1-1-2025

Journal

AMIA Summits on Translational Science Proceedings

PMID

40502241

PMCID

PMC12150736

Abstract

Electronic health records (EHRs) contain diverse patient data with varying visit frequencies. While irregular tensor factorization techniques such as PARAFAC2 have been used for extracting meaningful medical concepts from EHRs, existing methods fail to capture non-linear and complex temporal patterns and struggle with missing entries. In this paper, we propose REPAR, an RNN REgularized Robust PARAFAC2 method to model complex temporal dependencies and enhance robustness in the presence of missing data. Our approach employs Recurrent Neural Networks (RNNs) for temporal regularization and a low-rank constraint for robustness, enabling precise patient subgroup identification and improved clinical decision-making in noisy EHR data. We design a hybrid optimization framework that handles multiple regularizations and various data types. REPAR is evaluated on 3 real-world EHR datasets, demonstrating improved reconstruction and robustness under missing data. Two case studies further showcase REPAR's ability to extract meaningful dynamic phenotypes and enhance phenotype predictability from noisy temporal EHRs.

Published Open-Access

yes

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.