Faculty, Staff and Student Publications

Language

English

Publication Date

3-1-2024

Journal

International Journal of Hygiene and Environmental Health

DOI

10.1016/j.ijheh.2023.114317

PMID

38171265

PMCID

PMC12070395

PubMedCentral® Posted Date

5-13-2025

PubMedCentral® Full Text Version

Author MSS

Abstract

The literature informing susceptible periods of exposure on children’s neurodevelopment is limited. We evaluated the impacts of pre- and postnatal fine particulate matter (PM2.5) exposure on children’s cognitive and motor function among 1303 mother-child pairs in the Spanish INMA (Environment and Childhood) Study. Random forest models with temporal back extrapolation were used to estimate daily residential PM2.5 exposures that we averaged across 1-week lags during the prenatal period and 4-week lags during the postnatal period. The McCarthy Scales of Children’s Abilities (MSCA) were administered around 5 years to assess general cognitive index (GCI) and several subscales (verbal, perceptual-performance, memory, fine motor, gross motor). We applied distributed lag nonlinear models within the Bayesian hierarchical framework to explore periods of susceptibility to PM2.5 on each MSCA outcome. Effect estimates were calculated per 5 μg/m3 increase in PM2.5 and aggregated across adjacent statistically significant lags using cumulative β (βcum) and 95% Credible Intervals (95%CrI). We evaluated interactions between PM2.5 with fetal growth and child sex. We did not observe associations of PM2.5 exposure with lower GCI scores. We found a period of susceptibility to PM2.5 on fine motor scores in gestational weeks 1–9 (βcum = −2.55, 95%CrI = −3.53,−1.56) and on gross motor scores in weeks 7–17 (βcum = −2.27,95%CrI = −3.43,−1.11) though the individual lags for the latter were only borderline statistically significant. Exposure in gestational week 17 was weakly associated with verbal scores (βcum = −0.17, 95%CrI = −0.26,−0.09). In the postnatal period (from age 0.5–1.2 years), we observed a window of susceptibility to PM2.5 on lower perceptual-performance (β = −2.42, 95%CrI = −3.37,−1.46). Unexpected protective associations were observed for several outcomes with exposures in the later postnatal period. We observed no evidence of differences in susceptible periods by fetal growth or child sex. Preschool-aged children’s motor function may be particularly susceptible to PM2.5 exposures experienced in utero whereas the first year of life was identified as a period of susceptibility to PM2.5 for children’s perceptual-performance.

Keywords

Pregnancy, Female, Humans, Child, Preschool, Child, Infant, Air Pollutants, Prenatal Exposure Delayed Effects, Bayes Theorem, Particulate Matter, Cognition, Air Pollution, Environmental Exposure, Air pollution, PM2.5, McCarthy scales of Children’s abilities, Susceptible windows, Motor function, Cognitive function

Published Open-Access

yes

Included in

Public Health Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.