Faculty, Staff and Student Publications

Language

English

Publication Date

9-1-2024

Journal

Journal of the American Society of Nephrology

DOI

10.1681/ASN.0000000000000403

PMID

38844075

PMCID

PMC11387034

PubMedCentral® Posted Date

6-6-2024

PubMedCentral® Full Text Version

Post-print

Abstract

Key Points:

  1. We provide an atlas of cross-sectional and longitudinal serum and urine metabolite associations with eGFR and urine albumin-creatinine ratio in an older community-based cohort.

  2. Metabolic profiling in serum and urine provides distinct and complementary insights into disease.

Background: Metabolites represent a read-out of cellular processes underlying states of health and disease.

Methods: We evaluated cross-sectional and longitudinal associations between 1255 serum and 1398 urine known and unknown (denoted with “X” in name) metabolites (Metabolon HD4, 721 detected in both biofluids) and kidney function in 1612 participants of the Atherosclerosis Risk in Communities study. All analyses were adjusted for clinical and demographic covariates, including for baseline eGFR and urine albumin-creatinine ratio (UACR) in longitudinal analyses.

Results: At visit 5 of the Atherosclerosis Risk in Communities study, the mean age of participants was 76 years (SD 6); 56% were women, mean eGFR was 62 ml/min per 1.73 m2 (SD 20), and median UACR level was 13 mg/g (interquartile range, 25). In cross-sectional analysis, 675 serum and 542 urine metabolites were associated with eGFR (Bonferroni-corrected P < 4.0E-5 for serum analyses and P < 3.6E-5 for urine analyses), including 248 metabolites shared across biofluids. Fewer metabolites (75 serum and 91 urine metabolites, including seven metabolites shared across biofluids) were cross-sectionally associated with albuminuria. Guanidinosuccinate; N2,N2-dimethylguanosine; hydroxy-N6,N6,N6-trimethyllysine; X-13844; and X-25422 were significantly associated with both eGFR and albuminuria. Over a mean follow-up of 6.6 years, serum mannose (hazard ratio [HR], 2.3 [1.6–3.2], P = 2.7E-5) and urine X-12117 (HR, 1.7 [1.3–2.2], P = 1.9E-5) were risk factors of UACR doubling, whereas urine sebacate (HR, 0.86 [0.80–0.92], P = 1.9E-5) was inversely associated. Compared with clinical characteristics alone, including the top five endogenous metabolites in serum and urine associated with longitudinal outcomes improved the outcome prediction (area under the receiver operating characteristic curves for eGFR decline: clinical model=0.79, clinical+metabolites model=0.87, P = 8.1E-6; for UACR doubling: clinical model=0.66, clinical+metabolites model=0.73, P = 2.9E-5).

Conclusions: Metabolomic profiling in different biofluids provided distinct and potentially complementary insights into the biology and prognosis of kidney diseases.

Keywords

albuminuria, CKD

Published Open-Access

yes

jasn-35-1252-g001.jpg (132 kB)
Graphical Abstract

Included in

Public Health Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.