Faculty, Staff and Student Publications

Publication Date

12-9-2023

Journal

Scientific Reports

Abstract

This study evaluates the scale-free network assumption commonly used in COVID-19 epidemiology, using empirical social network data from SARS-CoV-2 Delta variant molecular local clusters in Houston, Texas. We constructed genome-informed social networks from contact and co-residence data, tested them for scale-free power-law distributions that imply highly connected hubs, and compared them to alternative models (exponential, log-normal, power-law with exponential cutoff, and Weibull) that suggest more evenly distributed network connections. Although the power-law model failed the goodness of fit test, after incorporating social network ties, the power-law model was at least as good as, if not better than, the alternatives, implying the presence of both hub and non-hub mechanisms in local SARS-CoV-2 transmission. These findings enhance our understanding of the complex social interactions that drive SARS-CoV-2 transmission, thereby informing more effective public health interventions.

Keywords

Humans, COVID-19, SARS-CoV-2, Social Networking, Texas

Included in

COVID-19 Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.