Journal Articles

Publication Date

12-9-2023

Journal

Scientific Reports

Abstract

This study evaluates the scale-free network assumption commonly used in COVID-19 epidemiology, using empirical social network data from SARS-CoV-2 Delta variant molecular local clusters in Houston, Texas. We constructed genome-informed social networks from contact and co-residence data, tested them for scale-free power-law distributions that imply highly connected hubs, and compared them to alternative models (exponential, log-normal, power-law with exponential cutoff, and Weibull) that suggest more evenly distributed network connections. Although the power-law model failed the goodness of fit test, after incorporating social network ties, the power-law model was at least as good as, if not better than, the alternatives, implying the presence of both hub and non-hub mechanisms in local SARS-CoV-2 transmission. These findings enhance our understanding of the complex social interactions that drive SARS-CoV-2 transmission, thereby informing more effective public health interventions.

Keywords

Humans, COVID-19, SARS-CoV-2, Social Networking, Texas

Included in

Public Health Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.