Faculty, Staff and Student Publications

Publication Date

1-1-2023

Journal

PLoS One

Abstract

In late 2019, the emergence of COVID-19 in Wuhan, China, led to the implementation of stringent measures forming the zero-COVID policy aimed at eliminating transmission. Zero-COVID policy basically aimed at completely eliminating the transmission of COVID-19. However, the relaxation of this policy in late 2022 reportedly resulted in a rapid surge of COVID-19 cases. The aim of this work is to investigate the factors contributing to this outbreak using a new SEIR-type epidemic model with time-dependent level of immunity. Our model incorporates a time-dependent level of immunity considering vaccine doses administered and time-post-vaccination dependent vaccine efficacy. We find that vaccine efficacy plays a significant role in determining the outbreak size and maximum number of daily infected. Additionally, our model considers under-reporting in daily cases and deaths, revealing their combined effects on the outbreak magnitude. We also introduce a novel Physics Informed Neural Networks (PINNs) approach which is extremely useful in estimating critical parameters and helps in evaluating the predictive capability of our model.

Keywords

Humans, Pandemics, SARS-CoV-2, COVID-19, Neural Networks, Computer, China, Vaccines, Social Behavior

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.