Faculty, Staff and Student Publications

Publication Date

4-1-2020

Journal

Biostatistics

Abstract

Two-phase sampling design is a common practice in many medical studies. Generally, the first-phase classification is fallible but relatively cheap, while the accurate second phase state-of-the-art medical diagnosis is complex and rather expensive to perform. When constructed efficiently it offers great potential for higher true case detection as well as for higher precision at a limited cost. In this article, we consider epidemiological studies with two-phase sampling design. However, instead of a single two-phase study, we consider a scenario where a series of two-phase studies are done in a longitudinal fashion on a cohort of interest. Another major design issue is non-curable pattern of certain disease (e.g. Dementia, Alzheimer's etc.). Thus often the identified disease positive subjects are removed from the original population under observation, as they require clinical attention, which is quite different from the yet unidentified group. In this article, we motivated our methodology development from two real-life studies. We consider efficient and simultaneous estimation of prevalence as well incidence at multiple time points from a sampling design-based approach. We have explicitly shown the benefit of our developed methodology for an elderly population with significant burden of home-health care usage and at the high risk of major depressive disorder.

Keywords

Aged, Biostatistics, Dementia, Depressive Disorder, Major, Epidemiologic Methods, Humans, Incidence, Longitudinal Studies, Prevalence, Research Design, Sampling Studies

Included in

Public Health Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.