Journal Articles

Publication Date

1-1-2023

Journal

Aerosol Science and Technology

Abstract

Although many studies have estimated the inhalation dose of aerosols emitted from electronic cigarettes (e-cigs), the association between the atomizing power and inhalation dose of e-cig aerosols has not been fully examined. The aim of this study was to determine the mass and inhalation doses of e-cig aerosols and their association with the atomizing power of vaping devices. Size-segregated aerosol masses were collected using an 11-stage cascade impactor and the deposition dose in the human respiratory tract was estimated using the size-segregated aerosol mass. The results showed that an increase in atomizing power was positively associated with the amount of aerosol mass generated (p-value < 0.001). The mass median aerodynamic diameter and mass mean diameter of aerosol were 0.91 μm and 0.84 μm, respectively. The average deposition fractions of aerosols in the head airway, tracheobronchial region, and alveolar region were 67.2, 6.2, and 26.6%, respectively. In conclusion, vaping with a higher atomizing power increases the e-cig aerosol inhalation dose in the airway.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.