Faculty, Staff and Student Publications

Publication Date

3-13-2024

Journal

Epidemiology and Health

Abstract

OBJECTIVES: to achieve the ambitious goal of eliminating schistosome infections, the Chinese government has implemented diverse control strategies. This study explored the progress of the 2 most recent national schistosomiasis control programs in an endemic area along the Yangtze River in China.

METHODS: We obtained village-level parasitological data from cross-sectional surveys combined with environmental data in Anhui Province, China from 1997 to 2015. A convolutional neural network (CNN) based on a hierarchical integro-difference equation (IDE) framework (i.e., CNN-IDE) was used to model spatio-temporal variations in schistosomiasis. Two traditional models were also constructed for comparison with 2 evaluation indicators: the mean-squared prediction error (MSPE) and continuous ranked probability score (CRPS).

RESULTS: The CNN-IDE model was the optimal model, with the lowest overall average MSPE of 0.04 and the CRPS of 0.19. From 1997 to 2011, the prevalence exhibited a notable trend: it increased steadily until peaking at 1.6 per 1000 in 2005, then gradually declined, stabilizing at a lower rate of approximately 0.6 per 1000 in 2006, and approaching zero by 2011. During this period, noticeable geographic disparities in schistosomiasis prevalence were observed; high-risk areas were initially dispersed, followed by contraction. Predictions for the period 2012 to 2015 demonstrated a consistent and uniform decrease.

CONCLUSION: The proposed CNN-IDE model captured the intricate and evolving dynamics of schistosomiasis prevalence, offering a promising alternative for future risk modeling of the disease. The comprehensive strategy is expected to help diminish schistosomiasis infection, emphasizing the necessity to continue implementing this strategy.

Keywords

Deep learning; National schistosomiasis control programs; Schistosomiasis; Spatio-temporal model

Included in

Public Health Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.