Faculty, Staff and Student Publications

Publication Date

8-1-2024

Journal

Statistical Methods in Medical Research

Abstract

This study investigates the heterogeneity of a biomarker's discriminative performance for predicting subsequent time-to-event outcomes across different patient subgroups. While the area under the curve (AUC) for the time-dependent receiver operating characteristic curve is commonly used to assess biomarker performance, the partial time-dependent AUC (PAUC) provides insights that are often more pertinent for population screening and diagnostic testing. To achieve this objective, we propose a regression model tailored for PAUC and develop two distinct estimation procedures for discrete and continuous covariates, employing a pseudo-partial likelihood method. Simulation studies are conducted to assess the performance of these procedures across various scenarios. We apply our model and inference procedure to the Alzheimer's Disease Neuroimaging Initiative data set to evaluate potential heterogeneities in the discriminative performance of biomarkers for early Alzheimer's disease diagnosis based on patients' characteristics.

Keywords

Humans, Alzheimer Disease, Biomarkers, ROC Curve, Area Under Curve, Models, Statistical, Likelihood Functions, Computer Simulation, Neuroimaging

DOI

10.1177/09622802241262521

PMID

39053568

PMCID

PMC11449645

PubMedCentral® Posted Date

7-25-2024

PubMedCentral® Full Text Version

Post-print

Published Open-Access

yes

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.