Faculty, Staff and Student Publications

Publication Date

9-1-2023

Journal

Biometrics

Abstract

Brain segmentation at different levels is generally represented as hierarchical trees. Brain regional atrophy at specific levels was found to be marginally associated with Alzheimer's disease outcomes. In this study, we propose an ℓ1 -type regularization for predictors that follow a hierarchical tree structure. Considering a tree as a directed acyclic graph, we interpret the model parameters from a path analysis perspective. Under this concept, the proposed penalty regulates the total effect of each predictor on the outcome. With regularity conditions, it is shown that under the proposed regularization, the estimator of the model coefficient is consistent in ℓ2 -norm and the model selection is also consistent. When applied to a brain sMRI dataset acquired from the Alzheimer's Disease Neuroimaging Initiative (ADNI), the proposed approach identifies brain regions where atrophy in these regions demonstrates the declination in memory. With regularization on the total effects, the findings suggest that the impact of atrophy on memory deficits is localized from small brain regions, but at various levels of brain segmentation. Data used in preparation of this paper were obtained from the ADNI database.

Keywords

Humans, Alzheimer Disease, Brain, Neuroimaging, Regression Analysis, Atrophy, hierarchical predictors, path analysis, penalized linear models, structural neuroimaging, tree-based regularization

DOI

10.1111/biom.13775

PMID

36263865

PMCID

PMC10115907

PubMedCentral® Posted Date

9-15-2025

PubMedCentral® Full Text Version

Author MSS

Published Open-Access

yes

Included in

Public Health Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.