Student and Faculty Publications

Publication Date

5-1-2024

Journal

Molecular Neurobiology

Abstract

Alzheimer's disease (AD) is the most prevalent form of neurodegeneration. Despite the well-established link between tau aggregation and clinical progression, the major pathways driven by this protein to intrinsically damage neurons are incompletely understood. To model AD-relevant neurodegeneration driven by tau, we overexpressed non-mutated human tau in primary mouse neurons and observed substantial axonal degeneration and cell death, a process accompanied by activated caspase 3. Mechanistically, we detected deformation of the nuclear envelope and increased DNA damage response in tau-expressing neurons. Gene profiling analysis further revealed significant alterations in the mitogen-activated protein kinase (MAPK) pathway; moreover, inhibitors of dual leucine zipper kinase (DLK) and c-Jun N-terminal kinase (JNK) were effective in alleviating wild-type human tau-induced neurodegeneration. In contrast, mutant P301L human tau was less toxic to neurons, despite causing comparable DNA damage. Axonal DLK activation induced by wild-type tau potentiated the impact of DNA damage response, resulting in overt neurotoxicity. In summary, we have established a cellular tauopathy model highly relevant to AD and identified a functional synergy between the DLK-MAPK axis and DNA damage response in the neuronal degenerative process.

Keywords

Animals, tau Proteins, DNA Damage, Humans, Neurons, MAP Kinase Signaling System, MAP Kinase Kinase Kinases, Mice, Mutation, Axons, Mice, Inbred C57BL, Cells, Cultured

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.