Language

English

Publication Date

4-11-2025

Journal

Science Advances

DOI

10.1126/sciadv.adv4082

PMID

40215312

PMCID

PMC11988410

PubMedCentral® Posted Date

4-11-2025

PubMedCentral® Full Text Version

Post-print

Abstract

The discovery of histone H3 copper reductase activity provides a novel metabolic framework for understanding the functions of core histone residues, which, unlike N-terminal residues, have remained largely unexplored. We previously demonstrated that histone H3 cysteine 110 (H3C110) contributes to cupric (Cu2+) ion binding and its reduction to the cuprous (Cu1+) form. However, this residue is absent in Saccharomyces cerevisiae, raising questions about its evolutionary and functional significance. Here, we report that H3C110 has been lost in many fungal lineages despite near-universal conservation across eukaryotes. Introduction of H3C110 into S. cerevisiae increased intracellular Cu1+ levels and ameliorated the iron homeostasis defects caused by inactivation of the Cup1 metallothionein or glutathione depletion. Enhanced histone copper reductase activity also extended replicative life span under oxidative growth conditions but reduced it under fermentative conditions. Our findings suggest that a trade-off between histone copper reductase activity, iron metabolism, and life span may underlie the loss or retention of H3C110 across eukaryotes.

Keywords

Saccharomyces cerevisiae, Iron, Histones, Cysteine, Saccharomyces cerevisiae Proteins, Copper, Homeostasis

Published Open-Access

yes

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.