Language

English

Publication Date

11-1-2024

Journal

Biomedical Engineering Letters

DOI

10.1007/s13534-024-00410-2

PMID

39465102

PMCID

PMC11502621

PubMedCentral® Posted Date

7-27-2024

PubMedCentral® Full Text Version

Post-print

Abstract

Assessing physical frailty (PF) is vital for early risk detection, tailored interventions, preventive care, and efficient healthcare planning. However, traditional PF assessments are often impractical, requiring clinic visits and significant resources. We introduce a video-based frailty meter (vFM) that utilizes machine learning (ML) to assess PF indicators from a 20 s exercise, facilitating remote and efficient healthcare planning. This study validates the vFM against a sensor-based frailty meter (sFM) through elbow flexion and extension exercises recorded via webcam and video conferencing app. We developed the vFM using Google's MediaPipe ML model to track elbow motion during a 20 s elbow flexion and extension exercise, recorded via a standard webcam. To validate vFM, 65 participants aged 20-85 performed the exercise under single-task and dual-task conditions, the latter including counting backward from a random two-digit number. We analyzed elbow angular velocity to extract frailty indicators-slowness, weakness, rigidity, exhaustion, and unsteadiness-and compared these with sFM results using intraclass correlation coefficient analysis and Bland-Altman plots. The vFM results demonstrated high precision (0.00-7.14%) and low bias (0.00-0.09%), showing excellent agreement with sFM outcomes (ICC(2,1): 0.973-0.999), unaffected by clothing color or environmental factors. The vFM offers a quick, accurate method for remote PF assessment, surpassing previous video-based frailty assessments in accuracy and environmental robustness, particularly in estimating elbow motion as a surrogate for the 'rigidity' phenotype. This innovation simplifies PF assessments for telehealth applications, promising advancements in preventive care and healthcare planning without the need for sensors or specialized infrastructure.

Keywords

Markerless motion capture, Remote patient monitoring, Frailty phenotype, Deep learning, Dual-task

Published Open-Access

yes

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.