Language

English

Publication Date

9-4-2025

Journal

American Journal of Human Genetics

DOI

10.1016/j.ajhg.2025.07.012

PMID

40829599

PMCID

PMC12461002

PubMedCentral® Posted Date

8-18-2025

PubMedCentral® Full Text Version

Post-print

Abstract

We present the Causal Pivot (CP) as a structural causal model (SCM) for analyzing genetic heterogeneity in complex diseases. The CP leverages an established causal factor or factors to detect the contribution of additional suspected causes. Specifically, polygenic risk scores (PRSs) serve as known causes, while rare variants (RVs) or RV ensembles are evaluated as candidate causes. The CP incorporates outcome-induced association by conditioning on disease status. We derive a conditional maximum-likelihood procedure for binary and quantitative traits and develop the Causal Pivot likelihood ratio test (CP-LRT) to detect causal signals. Through simulations, we demonstrate the CP-LRT’s robust power and superior error control compared to alternatives. We apply the CP-LRT to UK Biobank (UKB) data, analyzing three exemplar diseases: hypercholesterolemia (HC, low-density lipoprotein cholesterol ≥4.9 mmol/L; nc = 24,656), breast cancer (BC, ICD-10 C50; nc = 12,479), and Parkinson disease (PD, ICD-10 G20; nc = 2,940). For PRS, we utilize UKB-derived values, and for RVs, we analyze ClinVar pathogenic/likely pathogenic variants and loss-of-function mutations in disease-relevant genes: LDLR for HC, BRCA1 for BC, and GBA1 for PD. Significant CP-LRT signals were detected for all three diseases. Cross-disease and synonymous variant analyses serve as controls. We further develop ancestry adjustment using matching and inverse probability weighting as well as regression and doubly robust methods; we extend this to examine oligogenic burden in the lysosomal storage pathway in PD. The CP reveals an approach to address heterogeneity and is an extensible method for inference and discovery in complex disease genetics.

Keywords

Humans, Genetic Heterogeneity, Breast Neoplasms, Multifactorial Inheritance, Parkinson Disease, Genetic Predisposition to Disease, Female, Models, Genetic, Genetic Variation, Likelihood Functions, Genome-Wide Association Study, causal inference, genetic heterogeneity, complex disease, collider, rare variation, polygenic risk score

Published Open-Access

yes

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.